Ŵ	HALF	KULLEGG MARIA REGINA BOYS' SECONDARY MOSTA YEARLY EXAMINATIONS 2012/	BS M	
SUBJECT:	PHYSICS	Form 4	TIME:	1 HR 30 MIN
NAME :				
CLASS :		INDEX NO :		Track 3

Answer ALL questions in the spaces provided on the exam paper. All working must be shown. The use of a calculator is allowed. Where necessary take the acceleration due to gravity, $g = 10 \text{ m/s}^2$.

	$v = f \lambda$	f = <u>1</u> T
Waves and Optics	m = <u>v</u> u	m = <u>height of image</u> height of object
	η = <u>speed of light (air)</u> speed of light (medium)	η = <u>real depth</u> apparent depth
	W = mg	$v^2 = u^2 + 2as$
Forces and Motion	v = u + at	s = ut + ½ a t ²
Motion	Average speed = <u>Total Distance</u> Total time	s = <u>(u+v)</u> t 2

For examiner's use:

Number	1	2	3	4	5	6	7	8	Total
Maximum mark	8	8	8	8	8	15	15	15	85
Actual mark									

	Total Theory	Total Practical	Final Mark
Actual Mark			
Maximum Mark	85	15	100

SECTION A

<u>Tł</u>	nis section carries	<u>s 40 marks.</u>			Electric Field	1
1.	This question is about the electromagnetic spectrum.					lagnetic Field
	Fill in the blanks u	using <u>some</u> of	the words below.			
	frequency	, speed	ultravíolet	X-rays	wavelen	gth
	ínfra-red	vacuum	gamma rays	transver	se longíti	ıdínal
_	Electromagnetic	waves are all .		_ waves. TI	ney are able to	o travel
	through a		They all travel a	t the same		
	However they	all have	a different			and
		·	To detect fract	tures in	bones we	use
		Night	vision cameras make	use of		
	Skin tanning is ca	used by		·		[8]

2. This question is about sound.

State whether the statement about sound is TRUE or FALSE.

6	-	-	
1	-	32	ALC.
	0	E	

		True / False
a)	Sound is made up of longitudinal waves.	
b)	A reflected sound is called an echo.	
c)	Particles move up and down as sound travels through a medium.	
d)	Sound travels faster in liquids than in gases.	
e)	A quiet and a loud sound travel at the same speed.	
f)	Sound can travel through a vacuum.	
g)	Ultrasound is sound with a frequency higher than 10,000 Hz.	
h)	Sound travels faster than light.	

3. This question is about fibre optics.

Fibre optics are very thin solid pipes used to transmit light from one place to another.

Figure 1

- a) Draw on Figure 1 the path taken by the incident ray. [2]
- b) The ray undergoes total ______ reflection, because the ______ angle is exceeded. [2]
- c) The speed of light inside the fibre optic is ______ than that in air. [1]
- d) Figure 2 shows how fibre optics can be used to transmit sunlight inside a building. The light from the sun is channelled to different parts of the building.
 State one advantage and one disadvantage of using such a system.

4. This question is about water waves.

Figure 3 shows water wavefronts approaching a harbour's breakwater. The water depth inside and outside the harbour is the same.

5. This question is about reflection in a plane mirror.

An image can be formed in a plane mirror as shown in Figure 4.

- a) The mirror is said to be plane because it is _____. [1]
- b) The angle 'i' is called the angle of ______ while the angle 'r' is the angle of ______. N is called the _____. [3]
- c) The distance between the object and the mirror is always ______ to
 the distance between the image and the mirror. [1]
- d) The image obtained in a plane mirror cannot form on a screen because it is
- [1]
- e) It is difficult to read words and numbers formed in a plane mirror because they are laterally inverted. In the space below draw the number 83 laterally inverted.

[2]

SECTION B This section carries 45 marks.

6. This question is about refraction of light.

A fish appears to be at a different depth when observed as shown in Figure 5.

d) The table below shows how the real and apparent depths of the fish change.

Real depth (cm)	10	20	30	40	50	60
Apparent depth (cm)	7.5	15.0	22.5	30.0	37.5	45

- (i) Plot a graph of **apparent depth** (on y-axis) against **real depth** (on x-axis). [5]
- (ii) The apparent depth and real depth are _____ proportional. [1]
- (iii) When the fish is at a depth of 32 cm, it appears to be at a depth of _____ cm.
- (iv) Calculate the refractive index of water

[2]

- 7. This question is about lenses and the electromagnetic spectrum.
 - a) The diagram below shows how a lens can be used to produce an enlarged image.

lens	
	_
(i) The lens used is a lens.	[1]
(ii) Complete the ray diagram by drawing missing rays to show how the	
image forms.	[3]
(iii) Mark with a letter 'F' the position of the principal focus	[1]
	[.]
(iv) Measure with your ruler the:	
 object distance = cm 	[1]
 image distance = cm 	[1]
 focal length = cm 	[1]
(v) Apart from being enlarged, the image is also	
and	[2]
unu	[~]
(vi) Calculate the magnification of the lens.	
	[2]
	_ [2]
b) White light is made up of seven different colours.	
(i) I he effect in which white light is split up into seven different colours is c	alled
·	[1]
(ii) Calculate the velocity of orange light in air if it has a frequency of 5 x 10) ¹⁴ H⁊
(ii) Calculate the velocity of orange light in all, init has a frequency of 5×10^{-7} m	, 112
and a wavelength of 6 x 10 m.	
	[2]

- 8. This question is about objects in motion.
 - a) Complete the table by adding the missing symbol or unit.

	SYMBOL	UNIT
acceleration	a	
distance		т
initial velocity		m/s
final velocity		

[2]

[2]

- b) Starting <u>from rest</u> a car reaches a speed of 24 m/s in 6 seconds. Calculate the:
 - (i) acceleration of the car.
 - (ii) distance travelled by the car.
 - (iii) average speed of the car.
- c) A baseball catcher stops a ball travelling at 162 km/h in 0.2 seconds.
 - (i) Change 162 km/h to m/s.
 - (ii) Calculate the deceleration of the ball.
- _____ [2]

END OF PAPER

[5]

[2]

[2]